Steve M Taylor


Associate Professor of Medicine

My lab website has a fuller description of my research activities:

I am principally interested in field and translational studies of falciparum malaria. These interests fall along several lines:

1) Epidemiology. Falciparum malaria is an immense problem whose contours are difficult to discern in hyperendemic regions like much of sub-Saharan Africa. I am involved in field applications of molecular genetic techniques to better define the burden of parasitemia in endemic areas and the partitioning and flux of parasite populations. We are working on techniques to generate and parse high-dimensional genomic data to better understand the structure of these parasite populations. Ultimately the goal of these investigations is to inform measures to control malaria and contain distinct parasite populations.

2) Pathogenesis. Severe malaria is a lethal disease; it is the cause of most of the 400,000 malaria deaths annually in African children. In these children, sickle-trait hemoglobin confers >90% protection from severe, life-threatening malaria. Several lines of evidence support the hypothesis that this dramatic protection results from the inability of the parasite to export parasite-derived proteins to the surface of the infected human red blood cell. We are investigating the molecular genetic correlates of this phenomenon in in vitro and ex vivo systems in order to identify mechanisms by which sickle-trait neutralizes the parasite. By leveraging this naturally-occurring model of malaria protection we hope to ultimately identify druggable targets for future antiparasitic or adjunctive therapies.

3) Diagnostics. In the field, clinical practice guidelines now recommend parasitologic diagnosis of malaria prior to treatment. Parasite detection can be confirmed by traditional microscopy or by rapid immunochromatographic tests, but each of these approaches is potentially undermined by limits of detection, operator error, and the monoplex nature of parasite testing in settings with complex pathogen epidemiology. With collaborators in Biomedical Engineering at the Pratt School of Engineering, we are developing PCR-free multiplex detection assays that utilize robust, rapid, and scalable nanoengineered platforms that target multiple bloodborne tropical pathogens in a single assay. The ultimate goal of this project is to enhance the clinical management of febrile illness in the tropics.

4) Prevention. In malaria-endemic Africa, high-risk groups that suffer disproportionate malaria morbidity clearly benefit from antimalarial chemoprevention; these groups include pregnant women across Africa and children under 5 in West Africa. African children with sickle-cell anemia also suffer significant malaria morbidity, but chemoprevention regimens that are recommended for them lack a compelling evidence base. With partners in Malawi and Kenya, we are testing new approaches to malaria chemoprevention in both pregnant women and in children with sickle-cell anemia. The goal of these projects is to enhance public health guidelines for the routine care of these high-risk groups and reduce the burden of malaria in African children.

The ultimate goals of these translational studies of falciparum malaria in children and pregnant women is to integrate epidemiologic, clinical, and molecular genetic models of disease in order to inform the rational design of medical and public health interventions to reduce the awful burden of malaria.

Appointments and Affiliations

  • Associate Professor of Medicine
  • Associate Research Professor of Global Health

Contact Information

  • Office Location: 303 Research Drive, Sands Building #321A, Durham, NC 27710
  • Office Phone: +1 919 684 5815
  • Email Address:


  • University of North Carolina, Chapel Hill, 2012
  • Duke University, School of Medicine, 2012
  • Yale University, School of Medicine, 2007
  • M.D. Duke University, School of Medicine, 2004
  • M.P.H. University of North Carolina, Chapel Hill, 2003
  • B.S. Duke University, 1998

Courses Taught

  • MIDIP 301B: Research in Microbiology and Infectious Disease Study Program
  • GLHLTH 777: Infectious Disease Epidemiology in Global Settings — Surveillance, Prevention and Control
  • BIOLOGY 493: Research Independent Study
  • BIOLOGY 293: Research Independent Study

In the News

Representative Publications

  • Taylor, SM; Antonia, AL; Chaluluka, E; Mwapasa, V; Feng, G; Molyneux, ME; ter Kuile, FO; Meshnick, SR; Rogerson, SJ, Antenatal receipt of sulfadoxine-pyrimethamine does not exacerbate pregnancy-associated malaria despite the expansion of drug-resistant Plasmodium falciparum: clinical outcomes from the QuEERPAM study., Clin Infect Dis, vol 55 no. 1 (2012), pp. 42-50 [10.1093/cid/cis301] [abs].
  • Taylor, SM; Parobek, CM; Fairhurst, RM, Haemoglobinopathies and the clinical epidemiology of malaria: a systematic review and meta-analysis., Lancet Infect Dis, vol 12 no. 6 (2012), pp. 457-468 [10.1016/S1473-3099(12)70055-5] [abs].
  • Taylor, SM; Antonia, A; Feng, G; Mwapasa, V; Chaluluka, E; Molyneux, M; ter Kuile, FO; Rogerson, SJ; Meshnick, SR, Adaptive evolution and fixation of drug-resistant Plasmodium falciparum genotypes in pregnancy-associated malaria: 9-year results from the QuEERPAM study., Infect Genet Evol, vol 12 no. 2 (2012), pp. 282-290 [10.1016/j.meegid.2011.11.006] [abs].
  • Taylor, SM; Meshnick, SR; Worodria, W; Andama, A; Davis, JL; Cattamanchi, A; den Boon, S; Yoo, SD; Goodman, CD; Huang, L; International HIV-associated Opportunistic Pneumonias (IHOP) Study, , Low prevalence of Pneumocystis jirovecii lung colonization in Ugandan HIV-infected patients hospitalized with non-Pneumocystis pneumonia., Diagn Microbiol Infect Dis, vol 72 no. 2 (2012), pp. 139-143 [10.1016/j.diagmicrobio.2011.10.009] [abs].
  • Taylor, SM; van Eijk, AM; Hand, CC; Mwandagalirwa, K; Messina, JP; Tshefu, AK; Atua, B; Emch, M; Muwonga, J; Meshnick, SR; Ter Kuile, FO, Quantification of the burden and consequences of pregnancy-associated malaria in the Democratic Republic of the Congo., J Infect Dis, vol 204 no. 11 (2011), pp. 1762-1771 [10.1093/infdis/jir625] [abs].
  • Messina, JP; Taylor, SM; Meshnick, SR; Linke, AM; Tshefu, AK; Atua, B; Mwandagalirwa, K; Emch, M, Population, behavioural and environmental drivers of malaria prevalence in the Democratic Republic of Congo., Malar J, vol 10 (2011) [10.1186/1475-2875-10-161] [abs].
  • Taylor, SM; Messina, JP; Hand, CC; Juliano, JJ; Muwonga, J; Tshefu, AK; Atua, B; Emch, M; Meshnick, SR, Molecular malaria epidemiology: mapping and burden estimates for the Democratic Republic of the Congo, 2007., PLoS One, vol 6 no. 1 (2011) [10.1371/journal.pone.0016420] [abs].
  • Taylor, SM; Molyneux, ME; Simel, DL; Meshnick, SR; Juliano, JJ, Does this patient have malaria?, JAMA, vol 304 no. 18 (2010), pp. 2048-2056 [10.1001/jama.2010.1578] [abs].
  • Taylor, SM; Juliano, JJ; Trottman, PA; Griffin, JB; Landis, SH; Kitsa, P; Tshefu, AK; Meshnick, SR, High-throughput pooling and real-time PCR-based strategy for malaria detection., J Clin Microbiol, vol 48 no. 2 (2010), pp. 512-519 [10.1128/JCM.01800-09] [abs].
  • Taylor, SM; Juliano, JJ; Meshnick, SR, Artemisinin resistance in Plasmodium falciparum malaria., N Engl J Med, vol 361 no. 18 (2009) [10.1056/NEJMc091737] [abs].
  • Juliano, JJ; Taylor, SM; Meshnick, SR, Polymerase chain reaction adjustment in antimalarial trials: molecular malarkey?, J Infect Dis, vol 200 no. 1 (2009), pp. 5-7 [10.1086/599379] [abs].