Gaurav Arya


Professor in the Thomas Lord Department of Mechanical Engineering and Materials Science

My research laboratory uses physics-based computational tools to provide fundamental, molecular-level understanding of a diverse range of biological and soft-material systems, with the aim of discovering new phenomena and developing new technologies. The methods we use or develop are largely based on statistical mechanics, molecular modeling and simulations, stochastic dynamics, coarse-graining, bioinformatics, machine learning, and polymer/colloidal physics. Our current research interests fall within four main themes: genome organization and regulation; polymer-nanoparticle composites; viral-DNA-packaging; and DNA nanotechnology. Please visit our website for more details about each of these research projects.

Appointments and Affiliations

  • Professor in the Thomas Lord Department of Mechanical Engineering and Materials Science
  • Associate Professor of Biomedical Engineering

Contact Information

  • Office Location: 144 Hudson Hall, Box 90300, Duke University, Durham, NC 27708
  • Office Phone: (919) 660-5435
  • Email Address:
  • Websites:


  • New York University, 2007
  • Princeton University, 2005
  • Ph.D. University of Notre Dame, 2003
  • B.Tech. Indian Institute of Technology (India), 1998

Research Interests

Molecular modeling, molecular simulations, statistical mechanics, coarse-graining, machine learning, polymer and colloidal physics, polymer-nanoparticle composites, chromatin biophysics, DNA nanotechnology, viral DNA packaging, single-molecule force spectroscopy, nanoscale transport

Courses Taught

  • BME 493: Projects in Biomedical Engineering (GE)
  • BME 494: Projects in Biomedical Engineering (GE)
  • EGR 201L: Mechanics of Solids
  • ME 490: Special Topics in Mechanical Engineering
  • ME 555: Advanced Topics in Mechanical Engineering
  • ME 560S: Materials Science and Engineering Seminar

In the News

Representative Publications

  • Lee, BH-J; Kotov, NA; Arya, G, Reconfigurable Chirality of DNA-Bridged Nanorod Dimers., Acs Nano, vol 15 no. 8 (2021), pp. 13547-13558 [10.1021/acsnano.1c04326] [abs].
  • Pajak, J; Dill, E; Reyes-Aldrete, E; White, MA; Kelch, BA; Jardine, PJ; Arya, G; Morais, MC, Atomistic basis of force generation, translocation, and coordination in a viral genome packaging motor., Nucleic Acids Research, vol 49 no. 11 (2021), pp. 6474-6488 [10.1093/nar/gkab372] [abs].
  • Pajak, J; Atz, R; Hilbert, BJ; Morais, MC; Kelch, BA; Jardine, PJ; Arya, G, Viral packaging ATPases utilize a glutamate switch to couple ATPase activity and DNA translocation., Proceedings of the National Academy of Sciences of the United States of America, vol 118 no. 17 (2021) [10.1073/pnas.2024928118] [abs].
  • Lee, BH-J; Arya, G, Analytical van der Waals interaction potential for faceted nanoparticles., Nanoscale Horizons, vol 5 no. 12 (2020), pp. 1628-1642 [10.1039/d0nh00526f] [abs].
  • Deluca, M; Shi, Z; Castro, CE; Arya, G, Dynamic DNA nanotechnology: Toward functional nanoscale devices, Nanoscale Horizons, vol 5 no. 2 (2020), pp. 182-201 [10.1039/c9nh00529c] [abs].
  • Tang, T-Y; Zhou, Y; Arya, G, Interfacial Assembly of Tunable Anisotropic Nanoparticle Architectures., Acs Nano, vol 13 no. 4 (2019), pp. 4111-4123 [10.1021/acsnano.8b08733] [abs].
  • Kilic, S; Felekyan, S; Doroshenko, O; Boichenko, I; Dimura, M; Vardanyan, H; Bryan, LC; Arya, G; Seidel, CAM; Fierz, B, Single-molecule FRET reveals multiscale chromatin dynamics modulated by HP1α., Nature Communications, vol 9 no. 1 (2018) [10.1038/s41467-017-02619-5] [abs].
  • Shi, Z; Castro, CE; Arya, G, Conformational Dynamics of Mechanically Compliant DNA Nanostructures from Coarse-Grained Molecular Dynamics Simulations., Acs Nano, vol 11 no. 5 (2017), pp. 4617-4630 [10.1021/acsnano.7b00242] [abs].